Sydney Girls High School # 2012 MATHEMATICS EXTENSION 2 [November 2011] ## YEAR 12 ASSESSMENT TASK 1 Time Allowed: 60 minutes + 5 minutes reading time. | Name: | Teacher: | | |-------|----------|--| | | | | | | | | Topics: Uniform Circular Motion, Curve Sketching. #### General Instructions: - There are EIGHT (8) Questions which are not of equal value. - · Attempt all questions. - Show all necessary working. Marks may be deducted for badly arranged work or incomplete working. - · Start each question on a new page. - · Write on one side of the paper only. - · Diagrams are NOT to scale. - · Board-approved calculators may be used. - Write your student number clearly at the top of each question and clearly number each question. - Use $g = 10ms^{-2}$ in all questions. Total: 50 marks Question 1 (6 marks) Given $f(x) = x^2 - 1$ draw sketch graphs of the following: $$y = f(x)$$ $$(b) y = -f(x)$$ Marks $$(c) y = \frac{1}{f(x)}$$ $$(d) y^2 = f(x)$$ #### Question 2 (8 marks) Sketch the following showing any intercepts or asymptotes: (a) $$9y^2 + 25x^2 = 1$$ (b) $$(x+3)(y+2)=4$$ (c) $$x^2 - 9y^2 = 1$$ (d) $$y = \frac{1}{(x-2)(x+1)^2}$$ 3 3 #### Question 3 (10 marks) The diagram is a sketch of the function y = f(x) which cuts the x axis at x = 2 and x = 5. The graph has asymptotes x = 0 and y = 0. On separate diagrams sketch: $$(a) y = |f(x)|$$ (b) $$y = f(|x|)$$ (c) $$y = [f(x)]^2$$ (d) $$2^{f(x)}$$ 2 $$(e) y = f(x^2) 2$$ $$(f) y = \sqrt{f(-x)} 2$$ #### Question 4 (3 marks) A girl ties a stone of mass 0.3 kg to the end of a piece of string, then swings it in a circle of radius 1.5m. If the tension in the string is 3 N, calculate: - a) the speed of the stone - (b) the frequency of its motion - its angular velocity #### Question 5 (4 marks) A 5 metre piece of string AB has a mass of 4kg attached at point B. The string is then rotated about A in a horizontal circle. If the string breaks when the speed of rotation reaches 15 rad/sec, (a) Find the breaking strain of the string o) If the 4kg mass at B is replaced by a 3kg mass at the same position, and a . 1kg mass 2 metres from A, find the new maximum speed of rotation (in rad/sec) #### Question 6 (7 marks) A railway track goes around a curve of radius 500m. The tracked is inclined at θ° to the horizontal. The forces acting on a train taking the curve are the weight force mg, a sideways frictional force F and the normal reaction force. - (a) Draw a diagram of the track showing all forces acting on a train taking the corner. - (b) By resolving forces vertically and horizontally derive an expression for F that is independent of N. - (c) At what angle should the track be banked for a designed train speed of 20ms⁻¹? ## Question 7 (7 marks) A 1kg ball is attached to a rigid vertical rod by means of two strings each one metre long. The strings are attached to the rod one metre apart. The system is rotating about the rod at ω radians per second. Both strings are taught and form an equilateral triangle with the rod. (a) What is the tension in the lower string (in terms of ω)? Marks (b) What is the speed (ν) of the ball, if the ratio of the tension in the upper string to the tension in the lower string is 3:1? ## Question 8 (6 marks) A smooth hollow cone of semi vertex angle θ is placed with axis vertical and vertex V downwards. A particle P moves in a circle on its inner surface making x revolutions per second. (a) Show that the distance (r) of the particle from the axis of the cone at any time is: $\frac{g \cot \theta}{4\pi^2 x^2}$. 2 (b) If $\theta = 30^{\circ}$ and x = 1 find VQ. 2 (c) If the linear velocity is to be doubled, find the minimum height of the cone 2 ### End of paper. [4] Horizontally: $$F\cos\theta + N\sin\theta = \frac{mv^2}{r} \to (1)$$ ## Vertically: $$N\cos\theta = F\sin\theta + mg$$ $N\cos\theta - F\sin\theta = mg \rightarrow (2)$ $(1) \times \cos \theta$ $$F\cos^2\theta + N\cos\theta\sin\theta = \frac{mv^2}{r}\cos\theta \rightarrow (3)$$ $(2) \times \sin \theta$ $$N\sin\theta\cos\theta - F\sin^2\theta = mg\sin\theta \to (4)$$ $$(3)-(4)$$ $$F = \frac{mv^2}{r}\cos\theta - mg\sin\theta \to (5)$$ Substitute: $$F = 0$$ $$v = 20ms^{-1}$$ $$y=20ms$$. $$r = 500$$ $$0 = \frac{m \times 20^2}{500} \cos \theta - 10m \sin \theta$$ $$10m\sin\theta = \frac{m \times 20^2}{500}\cos\theta$$ $$\tan\theta = \frac{20^2}{500 \times 10^7}$$ $$\tan\theta = \frac{2}{25}$$ $$\theta = 4^{\circ}34^{\circ}$$ $$\theta = 4^{\circ}34$$ Horizontally: $$\sin 60(T_1 + T_2) = mr\omega^2 \rightarrow (1)$$ Vertically: $\overline{T_1 \cos 60} = T_2 \cos 60 + mg$ $\cos 60(T_1 - T_2) = mg \rightarrow (2)$ From (1) $$\frac{\sqrt{3}}{2}(T_1 + T_2) = 1 \times \frac{\sqrt{3}}{2}\omega^2$$ $$T_1 + T_2 = \omega^2 \rightarrow (3)$$ From (2) $$\frac{1}{2}(T_1 - T_2) = 10$$ $$T_1 - T_2 = 20 \to 6$$ $$T_1 - T_2 = 20 \rightarrow (4)$$ (3)-(4) $$2T_2 = \omega^2 - 20$$ $$T_2 = \frac{\omega^2 - 20}{2}$$ $$T_1: T_2 = 3:1$$ $$T_1 = 3T_2$$ $$\frac{20 + \omega^2}{2} = 3\left(\frac{\omega^2 - 20}{2}\right)$$ $$20 + \omega^2 = 3\omega^2 - 60$$ $$2\omega^2 = 80$$ $$\omega^2 = 40$$ $$\omega = 2\sqrt{10} \text{ rad/sec}$$ $$v = r\omega$$ $$= \frac{\sqrt{3}}{2} \times 2\sqrt{10}$$ $$= \sqrt{30}ms^{-1}$$ Question 8 Horizontally: $N\cos\theta = mr\omega^2 \rightarrow (1)$ Vertically: $N\sin\theta = mg \rightarrow (2)$ $(2) \div (1)$ $$\tan\theta = \frac{g}{r\omega^2}$$ Substituting: $$\omega = 2\pi x$$ $$\tan \theta = \frac{g}{r4\pi^2 x^2}$$ $$r = \frac{g \cot \theta}{4\pi^2 x^2}$$ If $$\theta = 30^\circ$$ and $x = 1$ $$r = \frac{10 \cot 30}{4\pi^2}$$ $$= 0.44m$$ $$\tan 30 = \frac{0.44}{h}$$ $$VQ = \frac{0.44}{\tan 30}$$ $$= 0.76m$$ $v = 2 \times 0.44 \times 2\pi$ $=1.76\pi$ $$\frac{r}{h} = \frac{rg}{v^2}$$ $$h = \frac{v^2}{g}$$ $$= 3.06m$$ | | esansiana esentimes, efenteen | |--|--| | | en nattrocommissioner energiens allem gewondt sterner ette | | | | | | e propriese de la companya com | | | والمتعادة | | | | | | | | | efemblekkund diadeladischendenden ja i i majanan beliebendenden | | | ediadrafiaabaatid adelaadraatidaatidaa, ay ay mahdidad dadiis o |